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ABSTRACT

This paper investigates the contemporary applications of Fuzzy Logic (FL) in robotics, focusing on its
flexibility and efficiency in addressing challenges posed by uncertainty and complexity in dynamic
environments. First introduced by Lotfi Zadeh in 1965, Fuzzy Logic allows for the processing of
imprecise and ambiguous information, making it a valuable tool for decision-making in robotic
systems. The research explores the role of FL in key areas such as motion control, obstacle avoidance,
human-robot interaction, and medical robotics. Through the analysis of case studies, the paper
demonstrates how FL enhances the adaptability and performance of robots in real-world scenarios by
providing a framework for handling nonlinearity and uncertainty.

We also examine the theoretical foundations of Fuzzy Logic, including membership functions, fuzzy
inference systems, and defuzzification techniques, which enable robots to make more human-like
decisions in uncertain environments. Additionally, it discusses the integration of Fuzzy Logic with
other control methods, such as PID controllers and neural networks, to improve system performance.
Despite its advantages, the paper highlights several challenges, including computational complexity,
the need for precise parameter tuning, and issues with scalability. The study concludes with
recommendations for future research to optimize Fuzzy Logic-based systems for real-time
applications and hybrid models to enhance the robustness and generalizability of robotic systems.

Keywords — Fuzzy Logic, Robotics, Intelligent Control Systems, Human-Robot Interaction — HRI,
Linguistic Processing.
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I.Introduction

Robotics technologies have witnessed rapid advancements in recent decades, making robotic
systems a fundamental component of industrial, medical, and service applications, with a clear
expansion in their capabilities for mobility, perception, and communication.
With this widespread adoption, the need has become pressing to develop control and decision-
making methods characterized by flexibility and adaptability, particularly in non-ideal
environments marked by uncertainty and complexity.

In this context, researchers face multiple challenges, such as dealing with inaccurate sensor
signals or making decisions in ambiguous situations that cannot be represented using strict
conventional mathematical logic. Here emerges the significance of Fuzzy Logic (FL), which is
considered one of the most prominent artificial intelligence techniques, providing effective
solutions to handle ambiguity and uncertainty.

Fuzzy Logic was first proposed by Lotfi Zadeh in 1965 [1] as an alternative to binary classical
logic for processing linguistic and vague information.

The objective of this research is to examine how fuzzy logic can be utilized in contemporary
robotic systems, through analyzing its role in diverse fields such as:

Motion Control.

Navigation and Obstacle Avoidance.
Human-Robot Interaction.

Assistive and Medical Robotics.

Furthermore, the research discusses the theoretical foundations of fuzzy logic, presents case
studies from recent literature, and analyzes the challenges and future prospects of this approach.

1. Theoretical Foundations of Fuzzy Logic — Fuzzy Logic Basics

A. The Emergence of Fuzzy Logic and Its Historical Development

Fuzzy logic first appeared in the scientific community in 1965, when Lotfi Zadeh presented
his seminal paper “Fuzzy Sets”, published in the journal Information and Control [1].

The purpose of this paper was to expand the traditional concept of mathematical logic, which
is based on binary values (True/False), by introducing the idea of partial membership to sets
with imprecisely defined boundaries, which were later termed Fuzzy Sets.

The core idea lies in the fact that certain linguistic concepts we use in everyday life, such as
“cold”, “tall”, or “fast”, cannot be strictly confined within rigid mathematical definitions. For
instance, there is no precise boundary between “moderate temperature” and “high
temperature”. Instead, there exists a transitional fuzzy region that can be represented by a
degree of membership to each category
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Following the publication of Zadeh’s theory, applications of fuzzy logic began to emerge in
various domains such as control, artificial intelligence, expert systems, natural language
processing, and decision-making systems. Later, fuzzy logic was widely adopted in robotics,
owing to its adaptive and flexible nature in dealing with complex environments.

B. The Difference Between Classical Logic and Fuzzy Logic

Classical Logic, also known as Boolean Logic or the “true or false” logic, is based on the
assumption that every piece of information is either completely true (1) or completely false (0).
This type of reasoning is suitable for computational machines and digital systems; however, it
is incapable of handling ambiguous information or intermediate values.

Fuzzy Logic, on the other hand, is based on the idea that truth can be relative rather than
absolute, where values are expressed by a Membership Value ranging between 0 and 1.

Figure 1 illustrates the difference between Classical Logic and Fuzzy Logic in the problem of
determining a person’s height, whether he or she is “tall” or “not tall.” The function at the top
represents the approach of Classical Logic, while the function at the bottom represents Fuzzy
Logic.

Figure 2 illustrates the basic types of membership functions—Triangular, Trapezoidal,
Gaussian, and Bell—and the multiple membership degrees they generate [2].

For example, in a system designed to determine a person’s height:

(a) Trianguler MF (b) Trapezoidal MF
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Fig. 113 Difference between classical logic and fuzzy
logic in the problem of determining a person’s height
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A person with a height of 1.80 meters may have a membership degree of 0.2 in the set “medium”
and a membership degree of 0.8 in the set “tall” as shown in figure 3.

Consequently, the system is able to make more realistic decisions based on these relative
values [3].

Property Classical Logic (Boolean) Fuzzy Logic

Type of values Only 0 or 1 Any value between 0 and 1
Handling of ambiguity | Not possible Fully possible

Best suited for Strict computational systems | Realistic and dynamic systems

C. Components of a Fuzzy System

g Linguistic value
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Fig. 5 Membership functions for a fuzzy system
applied to human height classification

A typical fuzzy system consists of four fundamental stages:

a. Fuzzification

This is the stage in which crisp inputs are transformed into fuzzy membership degrees,
according to what is known as Membership Functions.
For example, if the user inputs the value “speed = 45 km/h”, it can be converted into
membership degrees for each of “Slow”, “Medium”, and “Fast” using specific curves such
as triangular or Gaussian functions [4].

b. Rule Base

This contains a set of conditional linguistic rules in the form of:
“If the speed is slow and the direction is left, then decrease the steering angle.”
These rules are written using IF-THEN statements,

and they represent the core of the system, since they embody human or expert knowledge
in decision-making.
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c. Inference Engine

This step simulates the human way of making decisions, as it processes the fuzzy rules
based on the input values and derives fuzzy outputs through techniques such as:

e Mamdani Method (the most commonly used)
e Sugeno Method (mathematically more efficient)

Figurell7 illustrates the block diagram of the fuzzy inference system, showing the stages of:
Fuzzification, Rule Base, Inference Engine, and Defuzzification .

Fuzzy Fuzzy
Qutputs

Inputs  + i
E Inference ,
\
' i

Fuzzifier E Rules 1| Defuzzifier

E Crisp
' Output

..............

Fig.6 Diagram of a fuzzy inference system (FI1S)

d. Defuzzification

This is the final stage in which the fuzzy output values are converted into a precise
numerical value that the system can use as a control signal (e.g., steering angle or motor
speed).

The most well-known defuzzification methods include:

e Centroid Method
o Max Membership Method

D. Types of Fuzzy Controllers
i.  Type-1Fuzzy Systems

These are the traditional fuzzy systems, where membership functions are predetermined
using fixed values. They are ideal for systems with low to medium complexity.

ii.  Type-2 Fuzzy Systems

These use fuzzy membership of fuzzy sets (Fuzzy Membership of Fuzzy Sets), which allows
them to handle higher levels of uncertainty, especially in unstructured environments (e.g.,
autonomous driving and human interaction). However, they are more computationally and
processing-intensive.

Figure 118 illustrates the visual difference between the membership functions of a traditional
Type-1 fuzzy system and a Type-2 fuzzy system,

ISSN: 2960-2548 journal.manara.edu.sy Page 5




Manara University Journal — Volume (5), Issue (1), Year (2025)

where there exists an uncertainty region known as the Footprint of Uncertainty (FOU):

e Inthe Type-1 representation (Figure a), the line is crisp and well-defined.

e In the Type-2 representation (Figure b), there are two regions: the Upper MF and the
Lower MF, which clarify the uncertainty, further illustrated in Figure 119.

To understand the practical and technical difference between these two types, the following
table presents a detailed comparison that highlights the most important aspects of distinction:

H(x) H(xy)
a) b)
Fig.10 Visual comparison between different types of
fuzzy control systems
T Upper Membership
I ——————— Function Footprint of

(UMF} _ Uncertainity (FOL)
Type - 1

Membership Function

Lower Membership

Function
3 (LMF}

LiL2 L3 R1RZR3

Fig.6 Example of Type-2 membership functions

This comparison demonstrates that Type-2 systems provide a deeper and more realistic
representation in environments that contain noise or ambiguity, making them more suitable for

certain robotics applications, particularly in human interaction or navigation within
unstructured environments.
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Item Type-1 Type-2
Nature of membership | Defined by fixed values Upper and Lower functions define
functions the Footprint of Uncertainty (FOU)

and represent additional uncertainty

Handling uncertainty

Cannot model uncertainty in
membership functions

Can model multiple levels of
uncertainty

Computational complexity

Relatively low and easy to
implement

Higher complexity due to the need
for Type Reduction

Suitable for
exposed  to
uncertainty

Ideal in environments that require
precise control under ambiguous
and unstable conditions

Practical applications systems not

noise  or

Location of FOU Not present Always present between Upper

Membership Function (UMF) and

Lower  Membership  Function
(LMF) to define the uncertainty
range

I11.Modern Robotics Overview

A. Classification of Robots and Systems

Modern robots vary according to their environments and functions, and several main
categories can be distinguished:

a. Industrial Robots (Manipulators):

They operate in semi-structured environments such as production lines. The main sources of
uncertainty here are nonlinearities in joint friction and elasticity, in addition to variable
payloads. Typically, PID controllers or equivalent robust controllers are used. The role of fuzzy
logic is to formulate operational expertise into flexible rules for gain tuning and to reduce
vibrations at the arm’s end.

b. Ground Mobile Robots (UGVs):

They operate in human or outdoor non-ideal environments, which makes them subject to
navigational ambiguity, sensory noise, and changing ground friction conditions. They rely on
sensors such as LIDAR, RGB-D, IMU, and GPS. Local planning with path-tracking control is
typically used, while fuzzy logic provides flexible rules to balance speed and safety during
obstacle avoidance.

c. Aerial Robots (UAVS):

They operate in indoor or outdoor aerial environments and face sources of uncertainty such
as wind disturbances, response delays, and strict energy constraints. They rely on sensors
including IMU, cameras, and altimeters. Fast control techniques such as MPC or PID are
commonly adopted. Fuzzy logic is used here to adaptively tune gains under disturbances and
to handle approximate commands issued by the user.

journal.manara.edu.sy
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d. Service and Domestic Robots:

They are designed to operate in complex and non-ideal human environments, where human
interaction, surrounding clutter, and moving objects represent major sources of uncertainty.
They utilize vision sensors, microphones, and tactile sensors. Control usually combines local
planning with HRI strategies. Fuzzy logic helps in understanding approximate commands and
in naturally integrating user intentions.

e. Humanoid Robots or Soft Robots:

They aim for direct human interaction and the execution of complex tasks requiring high
mechanical compliance. Uncertainty sources are significant due to inaccurate models and the
flexible nature of the structure. They employ advanced force and tactile sensors along with
vision systems. Control is based on compliance and stability strategies, and fuzzy logic
contributes by formulating flexible policies to interpret concepts such as “softness” or “rigidity”
during contact.

f.  Swarm or Multi-Robot Systems:

They operate on distributed tasks and are affected by communication instability and
conflicting goals among units. They rely on distributed sensing, localization, and
communication, with coordination and task allocation rules applied. Fuzzy logic enables the
formulation of approximate and flexible consensus rules that help cope with delays or data loss
within the network.

B. Architecture of Modern Robotics

Modern robotic systems are based on a layered architecture that facilitates the integration of
hardware and software while ensuring real-time performance. The most important layers are:

e Sensory and actuation hardware: includes sensors such as LiDAR, RGB-D, IMU,
and actuators.

e Edge computing: embedded processing units (CPU/GPU) to ensure fast
responsiveness.

o Perception and representation: feature extraction and map construction from sensory
data.

e Planning and decision-making: transforming information into path and motion plans.

e Control, safety, and human-robot interaction: executing motion within safety
boundaries and handling human commands.
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This organization highlights where fuzzy logic can contribute, particularly in perception
(processing fuzzy data), local decision-making (avoiding uncertain obstacles), and control
(adapting response in systems that are difficult to model precisely) [5].
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Fig. 7 Architectural structure of the robot

C. General Challenges in Modern Robotics and Why Fuzzy Logic is Suitable

Modern robotic systems face increasing challenges resulting from the complexity of
environments, multiplicity of sensors, and their interaction with humans. These challenges include:

Sensory uncertainty: data coming from sensors such as LiDAR and RGB-D is often
noisy or incomplete.

Nonlinearity in modeling: accurate mathematical models often fail to represent the
dynamic reality of robots.

Human interaction: human commands are often imprecise or not directly translatable
into digital instructions.

Real-time response: the need to make rapid decisions in changing environments.

In this context, fuzzy logic is considered an ideal option because it:

oo o

Does not rely on precise mathematical models.

Allows the formulation of flexible rules based on human expertise.

Naturally handles approximate values and ambiguity.

Can be easily integrated with other control systems such as PID, MPC, and neural
networks.
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D. General Challenges in Modern Robotics and Why Fuzzy Logic is Suitable

In real-world robotic environments, information is often inaccurate or incomplete, whether
resulting from limited-resolution sensors, unexpected environmental changes, or unclear
human commands. Here, the role of fuzzy logic emerges as an effective tool for addressing this
type of uncertainty.

Fuzzy logic does not rely on binary values (true or false); rather, it employs degrees of truth
ranging between 0 and 1, which enables robots to make flexible decisions based on incomplete
or ambiguous information. For example:

e When determining the safe distance from an obstacle, the robot can evaluate the
situation as “somewhat close” instead of simply “close” or “far.”

e In human interaction, it can interpret commands such as “move at medium speed”
without requiring a strict definition of velocity.

e Innavigation, it integrates multiple data sources (such as vision, sound, and orientation)
to generate a logical response even if some data is unavailable or conflicting.

(c) FL is used to compensate for the perturbations.

Fig. 8 Examples illustrating different approaches to
applying fuzzy logic (FL) for controlling disturbed
systemns: (a) Using a Fuzzy Logic Controller (FLC) as
the main compensator. (b) Using FL for tuning the
main controller varameter. (c) Usina FL for disturba

In this manner, fuzzy logic enables robots to operate efficiently in non-ideal environments,
granting them adaptability and the ability to learn from context, thereby enhancing their
practical intelligence and bringing them closer to human-like reasoning [6].

IVV.Employment of Fuzzy Logic in Robotic Systems
A. Motion Control

Motion control is considered one of the fundamental applications of Fuzzy Logic (FL), as it
largely depends on controlling the interaction between the electrical and mechanical
components of the system. Many robots face nonlinear challenges and errors resulting from the
complex interactions between motors and actuators. These problems include phenomena such
as saturation, where the motor stops increasing speed or force once the input exceeds a certain
threshold, leading to nonlinear effects on the robot’s motion.
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Fuzzy Logic provides flexible solutions to deal with such types of errors by employing fuzzy
systems to dynamically adjust the robot’s response. Furthermore, Fuzzy Logic contributes to
reducing the impact of deadzones, which occur when changes in the input signal do not produce
any response, thereby enhancing the precision of control in robots such as surgical robots or
robots used in highly delicate operations [7] [8] [9]. Figure 8 illustrats different approaches to
applying fuzzy logic (FL) for controlling disturbed systems.

B. Saturation Control

Another problem encountered in robotic control is saturation, where actuators (such as motors
or hydraulic systems) cannot generate additional force or torque beyond a certain limit.
Saturation may lead to unexpected changes in the motion or force produced by the system. In
this case, Fuzzy Logic is utilized to provide compensation for saturation through integrated
control strategies such as Cascade Fuzzy Control, where Fuzzy Logic enhances motion control
and precise trajectory tracking in underwater robots or wheeled mobile robots [10].

C. Handling Disturbances and Uncertainties
Robots are often exposed to numerous disturbances and uncertainties in the environment,
such as friction or load variations. Fuzzy Logic provides effective solutions to these challenges

by designing fuzzy control systems that address uncertainties arising from performance
variations or external disturbances. One example is the use of Adaptive Fuzzy Control as shown

com

NI-PCI-6229 board | NI-PCI1-6229 board
lﬁ]-— " :lﬂ
“ Target Computer
o |o
= 0,

ats |

XA |
’ !
0

Auto-tuning algorithm

Fig. 9 Schematic of adaptive Time-Delay Control (Adaptive TDC)
for cable-driven manipulators, employing FL for parameter auto-
tuning.

in figure 9 to handle uncertainties caused by unexpected changes in the loads of electric motors
(DC Motors) [11]

D. Autonomous Navigation

In applications of Autonomous Vehicles (AVS), Fuzzy Logic is employed in designing
Lateral Control Laws to determine the reference velocity for driving in unpredictable
environments. It is also applied in Adaptive Cruise Control (ACC) systems to automatically
adjust the vehicle’s speed according to the vehicles in front. Fuzzy Logic assists in managing
unexpected conditions such as sudden movements of leading vehicles In the domain of Mobile
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Fig. 11 Block diagram of the hybrid Fuzzy Logic
Controller—Feedback Linearization Controller
(Hybrid FLC-FBC).

Robots, Fuzzy Logic is integrated with other techniques such as Model Predictive Control
(MPC) to determine robot paths and avoid obstacles in dynamic environments. This contributes
to improving robot performance in unstable environments where predicting future conditions
is difficult [12].

E. Path Planning and Collision Avoidance

In applications of Wheeled Mobile Robots (WMRs), Fuzzy Logic integrates path following
control algorithms with collision avoidance systems. In this case, Fuzzy Logic is employed to
adjust the longitudinal and lateral directions of the robot and ensure rapid responsiveness when
approaching an obstacle. Fuzzy Logic enhances the robot’s ability to make smooth and fast
decisions in crowded and complex paths.

Furthermore, Fuzzy Logic can be combined with techniques such as Backstepping Control to
ensure navigation in environments filled with obstacles. For example, the fuzzy system
guarantees that the robot remains on the designated path while avoiding collisions with
surrounding obstacles [13]. Figure 11 presents block diagram of the hybrid Fuzzy Logic
Controller—Feedback Linearization Controller (Hybrid FLC-FBC).

F. Navigation and Obstacle Avoidance

Fuzzy Logic is an effective tool in navigation and obstacle avoidance applications for mobile
robots, as it enables intelligent systems to make flexible decisions in undefined and dynamic
environments. By integrating sensor readings

such as sonar or LiDAR with fuzzy rules, the direction of motion and velocity can be
determined in a way that allows the robot to avoid obstacles and reach the designated target
even under inaccurate or incomplete information.

For example, a fuzzy control system has been developed to guide robots in unknown indoor
environments, where sensor readings and the desired motion direction are used as inputs, and
the wheel acceleration is determined as the output of the system. This enables the robot to avoid
obstacles and reach the designated target [14].
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Through the integration of Fuzzy Logic with other techniques such as artificial intelligence and
neural networks, the decision-making capability of robots can be enhanced to achieve more
accurate and effective responses in complex environments. For instance, an integrated system
combining Fuzzy Logic and genetic algorithms has been designed to guide intelligent robots in
dynamic and unknown environments, thereby improving their ability to avoid obstacles and
make flexible and effective decisions in real time. Overall, Fuzzy Logic is a powerful tool for
developing intelligent and flexible navigation systems capable of adapting to environmental
changes and making effective real-time decisions [15].Fuzzy Logic in Human-Robot
Interaction (HRI)

Human—-Robot Interaction is characterized by uncertainty, continuous variability, and
subjectivity in human behavior, making conventional binary logic insufficient for modeling the
dynamics of such interaction. Fuzzy Logic provides a flexible framework to address these
challenges by enabling robots to infer using linguistic and imprecise information.

For example, fuzzy rule-based systems allow the translation of ambiguous human commands
such as “move slowly” or “stay close” into quantifiable executable actions. Fuzzy Logic has
also been employed in emotional interaction, where human affective states are modeled as
fuzzy sets that allow the robot to gradually adapt its responses in a manner closer to human
nature, thereby enhancing social acceptance and trust.

Moreover, fuzzy control offers a mechanism for smooth decision-making in collaborative
environments, where parameters such as proximity, force, or speed must be continuously
adjusted to ensure safety and comfort. These applications demonstrate that the integration of
Fuzzy Logic increases adaptability, interpretability, and naturalness of interaction compared to
conventional approaches [16].

G. Fuzzy Logic in Medical and Assistive Robotics

Medical and assistive robots are among the fields that most benefit from the capabilities of
Fuzzy Logic, due to their direct association with humans and the inherent complexity and
individual variability involved.

In robotic rehabilitation systems, Fuzzy Logic enables the design of controllers that handle
varying levels of force and velocity according to the patient’s condition, thereby providing
personalized and flexible support during physiotherapy sessions. It has also been used in smart
prosthetic control systems, where biological signals such as surface electromyography (EMG)
are translated into motor commands, with Fuzzy Logic allowing the system to handle noise and
natural inaccuracies in biological signals.

In the field of robot-assisted surgery, Fuzzy Logic contributes to improving interaction
interfaces between the surgeon and the robot by translating both precise and ambiguous
commands into smoother control actions. Similarly,

applications in elderly care and chronic patient support show that Fuzzy Logic enables social
robots to evaluate the emotional or physical states of users in gradual terms rather than binary
decisions, thereby increasing acceptance and effectiveness in care environments.

Thus, Fuzzy Logic constitutes a fundamental tool for achieving flexibility, human-centered
adaptability, and personalization in medical and assistive robotics compared to rigid
conventional methods [17].
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V.Case Study from Contemporary Literature:

A. First Study: Online Tuning of PID Controller Using a Multilayer Fuzzy Neural Network
Design for Quadcopter Attitude Tracking Control

This study represents a prominent example of integrating fuzzy logic and neural network
techniques with the traditional PID algorithm in order to improve the performance of
guadcopter control systems, which are inherently characterized by nonlinear properties and
high sensitivity to external disturbances. The proposed approach relies on online tuning of the
controller parameters using a multilayer fuzzy neural network, which enabled achieving a
balance between the simplicity of the PID structure and its stability capability, and the
flexibility of intelligent systems in handling complex dynamics.

The strengths highlighted in the study are as follows:

a. The ability of the proposed methodology to adapt to varying operational conditions such as
aerodynamic effects and different payloads, which is difficult to achieve using a fixed-parameter
PID.

b. The integration of PID and Fuzzy Neural Network improved accuracy and reduced
tracking error compared to conventional designs.

c. The use of a multilayer network contributed to enhancing learning efficiency and
accommodating more complex dynamic patterns.

On the other hand, the study reveals several weaknesses, most notably:

a. The high computational burden resulting from integrating fuzzy logic with neural
networks, which may limit applicability in low-resource controllers or in time-critical
real-time systems.

b. The heavy dependence on data quality during both training and operation, as noise or
insufficient data can lead to degraded performance.

c. The difficulty of initial tuning of design elements (such as the number of layers, shapes
of membership functions, and learning parameters), which requires specialized
expertise and intensive experimental iteration.

d. The evaluation is often limited to simulation environments or restricted tests, raising
guestions about generalizability in real-world environments.

Accordingly, this study can be considered a successful example of hybrid control that
benefits from the simplicity of PID and the flexibility of artificial intelligence techniques.
However, the complexity of implementation and resource requirements present challenges
for transitioning from simulation to large-scale practical applications [18].

B. Second Study: Fuzzy Neural Network PID Control Design of Camellia Fruit Vibration

This study addresses the application of a hybrid algorithm that combines conventional PID
control, fuzzy logic, and neural networks, with the objective of enhancing the performance of
a vibration device used for camellia fruit detachment in the agricultural context. The design
aims to achieve more accurate and stable responses in vibration systems, which are typically

characterized by nonlinear properties and dynamic variations associated with fruit weight and
branch characteristics.

One of the major strengths of this work is that it provided a tangible improvement in vibration
control accuracy compared to conventional PID, with a clear ability to handle nonlinearity and
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adapt to load variations during operation. Furthermore, the study is noteworthy for not being
limited to theoretical simulation but extending to practical application on a real vibration
device, thereby enhancing the reliability and applicability of its findings.

Conversely, certain weaknesses emerge, primarily the high computational complexity that
accompanies the use of the hybrid system compared to simpler alternatives, which may increase
cost and hinder deployment in agricultural devices with limited resources. Additionally, the
initial tuning of the neural network and fuzzy functions depends on trial and error, which
reduces the ease of reusing the methodology in other applications. Moreover, the study was
restricted to camellia fruits under specific conditions, raising gquestions about generalizability
to other crops or diverse agricultural environments.

Finally, although the superiority over conventional PID was demonstrated, the absence of in-
depth comparisons with other advanced techniques such as adaptive control or pure neural
networks represents a potential research gap.

Thus, this study serves as an important example of the feasibility of employing hybrid
controllers (Fuzzy Neural PID) in the agricultural domain to improve efficiency and reduce
waste. At the same time, it reveals the need for further research to simplify the architecture and
enhance generalizability for broader practical applications [19].

C. Third Study: Review on PID, Fuzzy and Hybrid Fuzzy PID Controllers for Controlling
Non-linear Dynamic Behaviour of Chemical Plants

This paper represents a comprehensive review that addressed various applications of
traditional control systems (PID), fuzzy logic-based systems, and hybrid controllers (Fuzzy
PID), with a comparison of their performance in multiple industrial domains. The study
contributed to providing a synthetic perspective on the advantages and limitations of each type
of controller, enabling researchers to choose the most appropriate strategy depending on the
nature of the system under investigation.

The strengths of this review lie in its comprehensiveness and the breadth of applications
covered, as it highlighted the superiority of fuzzy and hybrid controllers in handling nonlinear
systems and uncertain conditions compared to conventional PID. Furthermore, it is noteworthy

that the review presented a comparative analysis illustrating the benefits of integrating the
simplicity of PID with the flexibility of Fuzzy, thus providing a solid scientific foundation for
developing more efficient hybrid control systems. In addition, the systematic presentation of
the literature assisted in identifying contemporary research trends in this field.

On the other hand, several weaknesses are observed. It is noted that the study placed a strong
emphasis on surveying published works without providing an in-depth quantitative analysis of
performance (such as error metrics, settling time, or energy consumption), which may limit the
reader’s ability to make precise comparisons. Moreover, although the scope of the review was
broad, it did not elaborate in detail on the practical challenges of implementing hybrid
controllers, such as computational complexity or execution costs. Finally, the study did not give
sufficient weight to comparisons with other modern control techniques (such as adaptive
controllers or neural networks), leaving a potential research gap for future work.

Thus, this paper represents an important reference for framing the main trends in control using
PID, fuzzy, and hybrid systems. However, it still requires enrichment with quantitative analyses
and practical applications to provide a more comprehensive picture of the advantages and
challenges [20].
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D. Fourth Study: Research of Fuzzy PID Elevator Control System Based on PLC

This study discusses the design and implementation of a Fuzzy PID controller for elevator
systems, relying on programmable logic controllers (PLC) as a practical implementation
platform. The research aims to improve performance compared to the conventional PID
controller, particularly in terms of stability, vibration reduction, and providing greater
passenger comfort.

One of the major strengths of this work is that it provides a clear practical application of the
hybrid fuzzy control concept within a common industrial context, thereby enhancing the
industrial applicability of the methodology. Furthermore, the integration of Fuzzy with PID
demonstrated improvements in response accuracy and reduction in settling time compared to
conventional control, along with a better ability to handle sudden load variations (such as
passenger number or speed changes). In addition, the use of the PLC platform increases realism
and reliability, given its widespread adoption in industry and the ease of integration with
elevator systems.

Conversely, the study recorded some weaknesses, the most notable being that the analysis
remained limited in terms of detailed quantitative metrics (such as RMS error values or energy
indices), which reduces the accuracy of comparisons with other control systems. Moreover, the
initial tuning process of the fuzzy logic was not addressed with a clear systematic methodology,
which may hinder ease of reapplication in different systems. Additionally, the experiments were
focused on a single model or limited environment, without comprehensive testing under diverse
operational scenarios (maximum loads, potential faults, or different operating environments),
which may affect generalizability.

Therefore, this study can be considered an important step in demonstrating the effectiveness of
hybrid fuzzy controllers in industrial elevator systems. At the same time, it highlights the need
for broader experiments and deeper quantitative analysis to enhance the reliability and
generalization of results across various real-world applications [21].

V1. Challenges and Limitations in Fuzzy Logic Control Systems:

Despite the wide adoption of fuzzy logic techniques in advanced control systems and their
success in handling nonlinearity and uncertain conditions, there are several challenges and
limitations that restrict their large-scale utilization. These can be summarized as follows:

A. Lack of a Unified Methodology for Designing Membership Functions and Rules

e The definition of membership functions and the construction of the rule base
largely depend on human expertise and prior experiences.

o This experimental nature makes the design subject to variability across researchers
and affects reproducibility in different applications.

Computational Burden in Real-Time

e In certain industrial or embedded applications, the high computational load
resulting from fuzzy inference processes may become an obstacle to real-time
execution, especially when a large number of rules or complex functions are used.
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B. Absence of Strict Mathematical Guarantees

Unlike some traditional or modern control methods (such as optimal linear control
or adaptive control), fuzzy logic lacks a unified mathematical framework that
guarantees stability and performance under all conditions.

This shortcoming raises concerns regarding the reliability of results, particularly
in safety-critical applications (such as aviation or medical systems) [22].

C. Limited Scalability (Scalability Issue)

With an increase in the number of variables or inputs, the number of rules required
grows explosively (Rule Explosion Problem), leading to difficulties in
management and high computational complexity.

This problem weakens the efficiency of fuzzy logic when dealing with large-scale
or multi-dimensional systems [23].

D. Heavy Reliance on Parameter Tuning

The tuning of membership function parameters and fuzzy inference weights
requires repeated experiments, which may be time- and computation-intensive.
The absence of systematic tuning algorithms causes performance to be highly
dependent on the quality of initial tuning [24].

E. Limited Generalization Capability

The performance of fuzzy logic is usually strong in the operational environment
for which it was designed, but it may deteriorate when facing new conditions that
were not considered during the design phase.

This highlights the need to integrate fuzzy logic with other techniques (such as
neural networks or evolutionary algorithms) to enhance adaptability and flexibility
[25].

F. Weak Standardized Quantitative Comparison

The majority of studies focus on qualitative improvements (such as enhanced
comfort or reduced vibrations) without relying on standardized quantitative
metrics that allow precise comparison with other control techniques.

This hinders the process of objective and comprehensive evaluation of the
performance of fuzzy controllers [26]

These challenges demonstrate that, despite its success in many practical applications, fuzzy
logic still faces limitations related to design, computation, and stability guarantees. To
overcome these issues, recent research trends are increasingly directed toward hybrid systems
(such as Fuzzy—PID, Fuzzy—Neural, and Fuzzy—Genetic), which aim to combine the flexibility

of fuzzy logic with the adaptive or algorithmic optimization capabilities of other methods,
thereby enhancing its effectiveness in more complex environments.
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VII.Conclusion and Recommedations

A. Conclusion

The integration of Fuzzy Logic into modern robotics has significantly enhanced the
performance and adaptability of robots, especially in environments that are uncertain, dynamic,
and non-ideal. Its ability to handle ambiguity, improve decision-making processes, and adapt
to real-time conditions makes it an invaluable tool across diverse robotic applications, including
autonomous navigation, medical assistive systems, and human-robot interaction. Despite its
advantages, challenges such as high computational complexity, the need for precise parameter
tuning, and the lack of a unified design methodology remain barriers to its broader application.
Nonetheless, the combination of Fuzzy Logic with other techniques, such as neural networks
or genetic algorithms, holds promise for overcoming these limitations and advancing the
capabilities of robotic systems.

B. Recommendations

a. Hybrid System Development: To overcome the limitations of Fuzzy Logic in
handling complex, real-time systems, future research should focus on developing
hybrid systems that combine FL with other advanced control techniques like PID
controllers, neural networks, or genetic algorithms. These hybrids can leverage the
strengths of both methodologies to enhance system efficiency and adaptability in
uncertain environments.

b. Standardized Quantitative Metrics: Researchers should prioritize the development
of standardized quantitative evaluation metrics for Fuzzy Logic systems. This will
enable more objective comparisons between different control methods and foster
improvements in the design and implementation of FL systems.

c. Computational Efficiency: To address the computational challenges associated with
FL, particularly in real-time applications, it is recommended to explore optimization
techniques, such as fuzzy inference reduction methods or hardware acceleration, to
enhance the scalability and speed of FL systems.

d. Real-World Testing and Generalization: While many FL-based systems have been
tested in controlled environments or simulations, it is essential to extend these studies
to real-world scenarios. Future work should focus on testing FL controllers in diverse
operational conditions to evaluate their robustness and generalizability.

e. Systematic Tuning Methods: The process of tuning fuzzy systems remains subjective
and computationally intensive. Developing systematic, automated tuning
methodologies could reduce the reliance on trial-and-error approaches, improving the
consistency and efficiency of FL applications in robotics
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